File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.aap.2023.107119
- Scopus: eid_2-s2.0-85162248914
- WOS: WOS:001019656800001
- Find via

Supplementary
- Citations:
- Appears in Collections:
Article: Analysis of the injury severity of motor vehicle–pedestrian crashes at urban intersections using spatiotemporal logistic regression models
| Title | Analysis of the injury severity of motor vehicle–pedestrian crashes at urban intersections using spatiotemporal logistic regression models |
|---|---|
| Authors | |
| Keywords | Bayesian inference Injury severity analysis Pedestrian crashes Spatiotemporal correlation Urban intersections |
| Issue Date | 25-May-2023 |
| Publisher | Elsevier |
| Citation | Accident Analysis & Prevention, 2023, v. 189 How to Cite? |
| Abstract | This paper conducted a comprehensive study on the injury severity of motor vehicle–pedestrian crashes at 489 urban intersections across a dense road network based on high-resolution accident data recorded by the police from 2010 to 2019 in Hong Kong. Given that accounting for the spatial and temporal correlations simultaneously among crash data can contribute to unbiased parameter estimations for exogenous variables and improved model performance, we developed spatiotemporal logistic regression models with various spatial formulations and temporal configurations. The results indicated that the model with the Leroux conditional autoregressive prior and random walk structure outperformed other alternatives in terms of goodness-of-fit and classification accuracy. According to the parameter estimates, pedestrian age, head injury, pedestrian location, pedestrian actions, driver maneuvers, vehicle type, first point of collision, and traffic congestion status significantly affected the severity of pedestrian injuries. On the basis of our analysis, a range of targeted countermeasures integrating safety education, traffic enforcement, road design, and intelligent traffic technologies were proposed to improve the safe mobility of pedestrians at urban intersections. The present study provides a rich and sound toolkit for safety analysts to deal with spatiotemporal correlations when modeling crashes aggregated at contiguous spatial units within multiple years. |
| Persistent Identifier | http://hdl.handle.net/10722/328480 |
| ISSN | 2023 Impact Factor: 5.7 2023 SCImago Journal Rankings: 1.897 |
| ISI Accession Number ID |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Zeng, Qiang | - |
| dc.contributor.author | Wang, Qianfang | - |
| dc.contributor.author | Zhang, Keke | - |
| dc.contributor.author | Wong, SC | - |
| dc.contributor.author | Xu, Pengpeng | - |
| dc.date.accessioned | 2023-06-28T04:45:20Z | - |
| dc.date.available | 2023-06-28T04:45:20Z | - |
| dc.date.issued | 2023-05-25 | - |
| dc.identifier.citation | Accident Analysis & Prevention, 2023, v. 189 | - |
| dc.identifier.issn | 0001-4575 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/328480 | - |
| dc.description.abstract | <p> This paper conducted a comprehensive study on the injury severity of motor vehicle–pedestrian crashes at 489 urban intersections across a dense road network based on high-resolution accident data recorded by the police from 2010 to 2019 in Hong Kong. Given that accounting for the spatial and temporal correlations simultaneously among crash data can contribute to unbiased parameter estimations for exogenous variables and improved model performance, we developed spatiotemporal logistic regression models with various spatial formulations and temporal configurations. The results indicated that the model with the Leroux conditional autoregressive prior and random walk structure outperformed other alternatives in terms of goodness-of-fit and classification accuracy. According to the parameter estimates, pedestrian age, head injury, pedestrian location, pedestrian actions, driver maneuvers, vehicle type, first point of collision, and traffic congestion status significantly affected the severity of pedestrian injuries. On the basis of our analysis, a range of targeted countermeasures integrating safety education, traffic enforcement, road design, and intelligent traffic technologies were proposed to improve the safe mobility of pedestrians at urban intersections. The present study provides a rich and sound toolkit for safety analysts to deal with spatiotemporal correlations when modeling crashes aggregated at contiguous spatial units within multiple years. <br></p> | - |
| dc.language | eng | - |
| dc.publisher | Elsevier | - |
| dc.relation.ispartof | Accident Analysis & Prevention | - |
| dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
| dc.subject | Bayesian inference | - |
| dc.subject | Injury severity analysis | - |
| dc.subject | Pedestrian crashes | - |
| dc.subject | Spatiotemporal correlation | - |
| dc.subject | Urban intersections | - |
| dc.title | Analysis of the injury severity of motor vehicle–pedestrian crashes at urban intersections using spatiotemporal logistic regression models | - |
| dc.type | Article | - |
| dc.description.nature | preprint | - |
| dc.identifier.doi | 10.1016/j.aap.2023.107119 | - |
| dc.identifier.scopus | eid_2-s2.0-85162248914 | - |
| dc.identifier.volume | 189 | - |
| dc.identifier.isi | WOS:001019656800001 | - |
| dc.identifier.issnl | 0001-4575 | - |
