File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1002/anie.202115939
- Scopus: eid_2-s2.0-85124537559
- PMID: 35080098
- WOS: WOS:000753959400001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Intercalation-Activated Layered MoO3 Nanobelts as Biodegradable Nanozymes for Tumor-Specific Photo-Enhanced Catalytic Therapy
Title | Intercalation-Activated Layered MoO<inf>3</inf> Nanobelts as Biodegradable Nanozymes for Tumor-Specific Photo-Enhanced Catalytic Therapy |
---|---|
Authors | |
Keywords | Catalytic Therapy Intercalation Layered MoO 3 Nanozymes Tumor-Specific |
Issue Date | 2022 |
Citation | Angewandte Chemie - International Edition, 2022, v. 61, n. 16, article no. e202115939 How to Cite? |
Abstract | The existence of natural van der Waals gaps in layered materials allows them to be easily intercalated with varying guest species, offering an appealing strategy to optimize their physicochemical properties and application performance. Herein, we report the activation of layered MoO3 nanobelts via aqueous intercalation as an efficient biodegradable nanozyme for tumor-specific photo-enhanced catalytic therapy. The long MoO3 nanobelts are grinded and then intercalated with Na+ and H2O to obtain the short Na+/H2O co-intercalated MoO3−x (NH−MoO3−x) nanobelts. In contrast to the inert MoO3 nanobelts, the NH−MoO3−x nanobelts exhibit excellent enzyme-mimicking catalytic activity for generation of reactive oxygen species, which can be further enhanced by the photothermal effect under a 1064 nm laser irradiation. Thus, after bovine serum albumin modification, the NH−MoO3−x nanobelts can efficiently kill cancer cells in vitro and eliminate tumors in vivo facilitating with 1064 nm laser irradiation. |
Persistent Identifier | http://hdl.handle.net/10722/329778 |
ISSN | 2023 Impact Factor: 16.1 2023 SCImago Journal Rankings: 5.300 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhou, Zhan | - |
dc.contributor.author | Wang, Yanlong | - |
dc.contributor.author | Peng, Feng | - |
dc.contributor.author | Meng, Fanqi | - |
dc.contributor.author | Zha, Jiajia | - |
dc.contributor.author | Ma, Lu | - |
dc.contributor.author | Du, Yonghua | - |
dc.contributor.author | Peng, Na | - |
dc.contributor.author | Ma, Lufang | - |
dc.contributor.author | Zhang, Qinghua | - |
dc.contributor.author | Gu, Lin | - |
dc.contributor.author | Yin, Wenyan | - |
dc.contributor.author | Gu, Zhanjun | - |
dc.contributor.author | Tan, Chaoliang | - |
dc.date.accessioned | 2023-08-09T03:35:16Z | - |
dc.date.available | 2023-08-09T03:35:16Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Angewandte Chemie - International Edition, 2022, v. 61, n. 16, article no. e202115939 | - |
dc.identifier.issn | 1433-7851 | - |
dc.identifier.uri | http://hdl.handle.net/10722/329778 | - |
dc.description.abstract | The existence of natural van der Waals gaps in layered materials allows them to be easily intercalated with varying guest species, offering an appealing strategy to optimize their physicochemical properties and application performance. Herein, we report the activation of layered MoO3 nanobelts via aqueous intercalation as an efficient biodegradable nanozyme for tumor-specific photo-enhanced catalytic therapy. The long MoO3 nanobelts are grinded and then intercalated with Na+ and H2O to obtain the short Na+/H2O co-intercalated MoO3−x (NH−MoO3−x) nanobelts. In contrast to the inert MoO3 nanobelts, the NH−MoO3−x nanobelts exhibit excellent enzyme-mimicking catalytic activity for generation of reactive oxygen species, which can be further enhanced by the photothermal effect under a 1064 nm laser irradiation. Thus, after bovine serum albumin modification, the NH−MoO3−x nanobelts can efficiently kill cancer cells in vitro and eliminate tumors in vivo facilitating with 1064 nm laser irradiation. | - |
dc.language | eng | - |
dc.relation.ispartof | Angewandte Chemie - International Edition | - |
dc.subject | Catalytic Therapy | - |
dc.subject | Intercalation | - |
dc.subject | Layered MoO 3 | - |
dc.subject | Nanozymes | - |
dc.subject | Tumor-Specific | - |
dc.title | Intercalation-Activated Layered MoO<inf>3</inf> Nanobelts as Biodegradable Nanozymes for Tumor-Specific Photo-Enhanced Catalytic Therapy | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1002/anie.202115939 | - |
dc.identifier.pmid | 35080098 | - |
dc.identifier.scopus | eid_2-s2.0-85124537559 | - |
dc.identifier.volume | 61 | - |
dc.identifier.issue | 16 | - |
dc.identifier.spage | article no. e202115939 | - |
dc.identifier.epage | article no. e202115939 | - |
dc.identifier.eissn | 1521-3773 | - |
dc.identifier.isi | WOS:000753959400001 | - |