File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Micromechanical property mismatch between pericellular and extracellular matrices regulates stem cell articular and hypertrophic chondrogenesis

TitleMicromechanical property mismatch between pericellular and extracellular matrices regulates stem cell articular and hypertrophic chondrogenesis
Authors
Keywordsarticular chondrogenesis
cartilage tissue engineering
dynamic compression
extracellular matrix
human mesenchymal stem cells
hypertrophic chondrogenesis
MAP 6: Development.
micromechanical property mismatch
pericellular matrix
proliferation-associated protein kinase C signaling
yes-associated protein signaling
Issue Date2-Dec-2022
PublisherCell Press
Citation
Matter, 2023, v. 6, n. 2, p. 475-492 How to Cite?
Abstract

Within the complex microarchitecture of native cartilage tissue, the micromechanical properties of pericellular and extracellular matrices (PCM and ECM) potentially play important roles in developmental, physiological, and pathological processes. Here, we report a unique biomaterial-based engineering strategy to create cartilage-tissue equivalents possessing PCM-ECM microarchitecture of native cartilage, where human mesenchymal stem cell (hMSC)-laden soft microgels representing PCM are encapsulated in stiff hydrogels representing ECM. Mechanical property mismatches between soft PCM and stiff ECM under cyclic compression regulates hMSC proliferation and chondrogenesis. High PCM-ECM mechanical mismatch (softer PCM) and the presence of PCM degradation under cyclic compression individually or synergistically direct hMSC articular chondrogenesis through the proliferation-associated protein kinase C signaling pathway, whereas low PCM-ECM mechanical mismatch (stiffer PCM) is solely responsible for hMSC hypertrophic chondrogenesis through the yes-associated protein signaling pathway. Our findings highlight PCM-ECM mechanical property mismatch as a critical design cue under dynamic compression for hMSC-based cartilage repair.


Persistent Identifierhttp://hdl.handle.net/10722/330982
ISSN
2023 Impact Factor: 17.3
2023 SCImago Journal Rankings: 5.048
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLee, JM-
dc.contributor.authorJeon, O-
dc.contributor.authorKoh, J-
dc.contributor.authorKim, HJ-
dc.contributor.authorLee, SJ-
dc.contributor.authorZhu, YZ-
dc.contributor.authorSong, JHY-
dc.contributor.authorLee, YJ-
dc.contributor.authorNasiri, R-
dc.contributor.authorLee, KJ-
dc.contributor.authorBandaru, P-
dc.contributor.authorCho, HJ-
dc.contributor.authorZhang, SM-
dc.contributor.authorBarros, NR-
dc.contributor.authorAhadian, S-
dc.contributor.authorKang, HM-
dc.contributor.authorDokmeci, MR-
dc.contributor.authorLee, JN-
dc.contributor.authorDi Carlo, D-
dc.contributor.authorAlsberg, E-
dc.contributor.authorKhademhosseini, A-
dc.date.accessioned2023-09-21T06:51:45Z-
dc.date.available2023-09-21T06:51:45Z-
dc.date.issued2022-12-02-
dc.identifier.citationMatter, 2023, v. 6, n. 2, p. 475-492-
dc.identifier.issn2590-2385-
dc.identifier.urihttp://hdl.handle.net/10722/330982-
dc.description.abstract<p>Within the complex microarchitecture of native cartilage tissue, the micromechanical properties of pericellular and extracellular matrices (PCM and ECM) potentially play important roles in developmental, physiological, and pathological processes. Here, we report a unique biomaterial-based engineering strategy to create cartilage-tissue equivalents possessing PCM-ECM microarchitecture of native cartilage, where human mesenchymal stem cell (hMSC)-laden soft microgels representing PCM are encapsulated in stiff hydrogels representing ECM. Mechanical property mismatches between soft PCM and stiff ECM under cyclic compression regulates hMSC proliferation and chondrogenesis. High PCM-ECM mechanical mismatch (softer PCM) and the presence of PCM degradation under cyclic compression individually or synergistically direct hMSC articular chondrogenesis through the proliferation-associated protein kinase C signaling pathway, whereas low PCM-ECM mechanical mismatch (stiffer PCM) is solely responsible for hMSC hypertrophic chondrogenesis through the yes-associated protein signaling pathway. Our findings highlight PCM-ECM mechanical property mismatch as a critical design cue under dynamic compression for hMSC-based cartilage repair.<br></p>-
dc.languageeng-
dc.publisherCell Press-
dc.relation.ispartofMatter-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectarticular chondrogenesis-
dc.subjectcartilage tissue engineering-
dc.subjectdynamic compression-
dc.subjectextracellular matrix-
dc.subjecthuman mesenchymal stem cells-
dc.subjecthypertrophic chondrogenesis-
dc.subjectMAP 6: Development.-
dc.subjectmicromechanical property mismatch-
dc.subjectpericellular matrix-
dc.subjectproliferation-associated protein kinase C signaling-
dc.subjectyes-associated protein signaling-
dc.titleMicromechanical property mismatch between pericellular and extracellular matrices regulates stem cell articular and hypertrophic chondrogenesis-
dc.typeArticle-
dc.identifier.doi10.1016/j.matt.2022.11.008-
dc.identifier.scopuseid_2-s2.0-85147249802-
dc.identifier.volume6-
dc.identifier.issue2-
dc.identifier.spage475-
dc.identifier.epage492-
dc.identifier.eissn2590-2385-
dc.identifier.isiWOS:001018809500001-
dc.identifier.issnl2590-2385-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats