File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1002/admt.202200022
- Scopus: eid_2-s2.0-85132611989
- WOS: WOS:000795801500001
Supplementary
- Citations:
- Appears in Collections:
Article: Ultralow-k Amorphous Boron Nitride Based on Hexagonal Ring Stacking Framework for 300 mm Silicon Technology Platform
Title | Ultralow-k Amorphous Boron Nitride Based on Hexagonal Ring Stacking Framework for 300 mm Silicon Technology Platform |
---|---|
Authors | |
Keywords | 300 mm Si wafers amorphous boron nitride hexagonal rings high density superior mechanical strength ultralow k |
Issue Date | 2022 |
Citation | Advanced Materials Technologies, 2022, v. 7, n. 10, article no. 2200022 How to Cite? |
Abstract | The implementation of ultralow dielectric constant (k value ≈ 2) materials to reduce signal propagation delay in advanced electronic devices represents a critical challenge in next generations of microelectronics technologies. The introduction of well-stacked and low polarity molecules that do not compromise film density may lead to improvements and desirable material engineering, as conventional porous SiOx derivatives exhibit detrimental degradation of thermo-mechanical properties when their k values are further scaled down. This work presents a systematic engineering approach for controlling ultralow-k amorphous boron nitride (aBN) deposition on 300 mm Si platforms. The results indicate that aBN grown from borazine precursor exhibits ultralow dielectric constant ≈2, high density, excellent mechanical strength, and extended thermodynamic stability. Unintentional boron ion doping during plasma dissociation that may induce artificial reductions of k value on n-type substrates is alleviated by employing a remote microwave plasma process. Moreover, the adoption of low growth rate processes for ultralow-k aBN deposition is found to be critical to provide for the superior mechanical strength and high density, and is attributed to the formation of hexagonal ring stacking frameworks. These results pave the way and offer engineering solutions for new ultralow-k material introduction into future semiconductor manufacturing applications. |
Persistent Identifier | http://hdl.handle.net/10722/335397 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lin, Cheng Ming | - |
dc.contributor.author | Hsu, Chuang Han | - |
dc.contributor.author | Huang, Wei Yu | - |
dc.contributor.author | Astié, Vincent | - |
dc.contributor.author | Cheng, Po Hsien | - |
dc.contributor.author | Lin, Yue Min | - |
dc.contributor.author | Hu, Wei Shan | - |
dc.contributor.author | Chen, Szu Hua | - |
dc.contributor.author | Lin, Han Yu | - |
dc.contributor.author | Li, Ming Yang | - |
dc.contributor.author | Magyari-Kope, Blanka | - |
dc.contributor.author | Yang, Chi Ming | - |
dc.contributor.author | Decams, Jean Manuel | - |
dc.contributor.author | Lee, Tzu Lih | - |
dc.contributor.author | Gui, Dong | - |
dc.contributor.author | Wang, Han | - |
dc.contributor.author | Woon, Wei Yen | - |
dc.contributor.author | Lin, Pinyen | - |
dc.contributor.author | Wu, Jeff | - |
dc.contributor.author | Lee, Jang Jung | - |
dc.contributor.author | Liao, Szuya Sandy | - |
dc.contributor.author | Cao, Min | - |
dc.date.accessioned | 2023-11-17T08:25:33Z | - |
dc.date.available | 2023-11-17T08:25:33Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Advanced Materials Technologies, 2022, v. 7, n. 10, article no. 2200022 | - |
dc.identifier.uri | http://hdl.handle.net/10722/335397 | - |
dc.description.abstract | The implementation of ultralow dielectric constant (k value ≈ 2) materials to reduce signal propagation delay in advanced electronic devices represents a critical challenge in next generations of microelectronics technologies. The introduction of well-stacked and low polarity molecules that do not compromise film density may lead to improvements and desirable material engineering, as conventional porous SiOx derivatives exhibit detrimental degradation of thermo-mechanical properties when their k values are further scaled down. This work presents a systematic engineering approach for controlling ultralow-k amorphous boron nitride (aBN) deposition on 300 mm Si platforms. The results indicate that aBN grown from borazine precursor exhibits ultralow dielectric constant ≈2, high density, excellent mechanical strength, and extended thermodynamic stability. Unintentional boron ion doping during plasma dissociation that may induce artificial reductions of k value on n-type substrates is alleviated by employing a remote microwave plasma process. Moreover, the adoption of low growth rate processes for ultralow-k aBN deposition is found to be critical to provide for the superior mechanical strength and high density, and is attributed to the formation of hexagonal ring stacking frameworks. These results pave the way and offer engineering solutions for new ultralow-k material introduction into future semiconductor manufacturing applications. | - |
dc.language | eng | - |
dc.relation.ispartof | Advanced Materials Technologies | - |
dc.subject | 300 mm Si wafers | - |
dc.subject | amorphous boron nitride | - |
dc.subject | hexagonal rings | - |
dc.subject | high density | - |
dc.subject | superior mechanical strength | - |
dc.subject | ultralow k | - |
dc.title | Ultralow-k Amorphous Boron Nitride Based on Hexagonal Ring Stacking Framework for 300 mm Silicon Technology Platform | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1002/admt.202200022 | - |
dc.identifier.scopus | eid_2-s2.0-85132611989 | - |
dc.identifier.volume | 7 | - |
dc.identifier.issue | 10 | - |
dc.identifier.spage | article no. 2200022 | - |
dc.identifier.epage | article no. 2200022 | - |
dc.identifier.eissn | 2365-709X | - |
dc.identifier.isi | WOS:000795801500001 | - |