File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1063/5.0030751
- Scopus: eid_2-s2.0-85094151562
- WOS: WOS:000582071500001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Beyond Graphene: Low-Symmetry and Anisotropic 2D Materials
Title | Beyond Graphene: Low-Symmetry and Anisotropic 2D Materials |
---|---|
Authors | |
Issue Date | 2020 |
Citation | Journal of Applied Physics, 2020, v. 128, n. 14, article no. 140401 How to Cite? |
Abstract | Low-symmetry 2D materials-such as ReS 2 and ReSe 2 monolayers, black phosphorus monolayers, group-IV monochalcogenide monolayers, borophene, among others-have more complex atomistic structures than the honeycomb lattices of graphene, hexagonal boron nitride, and transition metal dichalcogenides. The reduced symmetries of these emerging materials give rise to inhomogeneous electron, optical, valley, and spin responses, as well as entirely new properties such as ferroelasticity, ferroelectricity, magnetism, spin-wave phenomena, large nonlinear optical properties, photogalvanic effects, and superconductivity. Novel electronic topological properties, nonlinear elastic properties, and structural phase transformations can also take place due to low symmetry. The "Beyond Graphene: Low-Symmetry and Anisotropic 2D Materials"Special Topic was assembled to highlight recent experimental and theoretical research on these emerging materials. |
Persistent Identifier | http://hdl.handle.net/10722/335418 |
ISSN | 2023 Impact Factor: 2.7 2023 SCImago Journal Rankings: 0.649 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Barraza-Lopez, Salvador | - |
dc.contributor.author | Xia, Fengnian | - |
dc.contributor.author | Zhu, Wenjuan | - |
dc.contributor.author | Wang, Han | - |
dc.date.accessioned | 2023-11-17T08:25:44Z | - |
dc.date.available | 2023-11-17T08:25:44Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Journal of Applied Physics, 2020, v. 128, n. 14, article no. 140401 | - |
dc.identifier.issn | 0021-8979 | - |
dc.identifier.uri | http://hdl.handle.net/10722/335418 | - |
dc.description.abstract | Low-symmetry 2D materials-such as ReS 2 and ReSe 2 monolayers, black phosphorus monolayers, group-IV monochalcogenide monolayers, borophene, among others-have more complex atomistic structures than the honeycomb lattices of graphene, hexagonal boron nitride, and transition metal dichalcogenides. The reduced symmetries of these emerging materials give rise to inhomogeneous electron, optical, valley, and spin responses, as well as entirely new properties such as ferroelasticity, ferroelectricity, magnetism, spin-wave phenomena, large nonlinear optical properties, photogalvanic effects, and superconductivity. Novel electronic topological properties, nonlinear elastic properties, and structural phase transformations can also take place due to low symmetry. The "Beyond Graphene: Low-Symmetry and Anisotropic 2D Materials"Special Topic was assembled to highlight recent experimental and theoretical research on these emerging materials. | - |
dc.language | eng | - |
dc.relation.ispartof | Journal of Applied Physics | - |
dc.title | Beyond Graphene: Low-Symmetry and Anisotropic 2D Materials | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1063/5.0030751 | - |
dc.identifier.scopus | eid_2-s2.0-85094151562 | - |
dc.identifier.volume | 128 | - |
dc.identifier.issue | 14 | - |
dc.identifier.spage | article no. 140401 | - |
dc.identifier.epage | article no. 140401 | - |
dc.identifier.eissn | 1089-7550 | - |
dc.identifier.isi | WOS:000582071500001 | - |