File Download
There are no files associated with this item.
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Conference Paper: CATVI: Conditional and Adaptively Truncated Variational Inference for Hierarchical Bayesian Nonparametric Models
Title | CATVI: Conditional and Adaptively Truncated Variational Inference for Hierarchical Bayesian Nonparametric Models |
---|---|
Authors | |
Issue Date | 2022 |
Citation | Proceedings of Machine Learning Research, 2022, v. 151, p. 3647-3662 How to Cite? |
Abstract | Current variational inference methods for hierarchical Bayesian nonparametric models can neither characterize the correlation structure among latent variables due to the mean-field setting, nor infer the true posterior dimension because of the universal truncation. To overcome these limitations, we propose the conditional and adaptively truncated variational inference method (CATVI) by maximizing the nonparametric evidence lower bound and integrating Monte Carlo into the variational inference framework. CATVI enjoys several advantages over traditional methods, including a smaller divergence between variational and true posteriors, reduced risk of underfitting or overfitting, and improved prediction accuracy. Empirical studies on three large datasets reveal that CATVI applied in Bayesian nonparametric topic models substantially outperforms competing models, providing lower perplexity and clearer topic-words clustering. |
Persistent Identifier | http://hdl.handle.net/10722/336368 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Liu, Yirui | - |
dc.contributor.author | Qiao, Xinghao | - |
dc.contributor.author | Lam, Jessica | - |
dc.date.accessioned | 2024-01-15T08:26:13Z | - |
dc.date.available | 2024-01-15T08:26:13Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Proceedings of Machine Learning Research, 2022, v. 151, p. 3647-3662 | - |
dc.identifier.uri | http://hdl.handle.net/10722/336368 | - |
dc.description.abstract | Current variational inference methods for hierarchical Bayesian nonparametric models can neither characterize the correlation structure among latent variables due to the mean-field setting, nor infer the true posterior dimension because of the universal truncation. To overcome these limitations, we propose the conditional and adaptively truncated variational inference method (CATVI) by maximizing the nonparametric evidence lower bound and integrating Monte Carlo into the variational inference framework. CATVI enjoys several advantages over traditional methods, including a smaller divergence between variational and true posteriors, reduced risk of underfitting or overfitting, and improved prediction accuracy. Empirical studies on three large datasets reveal that CATVI applied in Bayesian nonparametric topic models substantially outperforms competing models, providing lower perplexity and clearer topic-words clustering. | - |
dc.language | eng | - |
dc.relation.ispartof | Proceedings of Machine Learning Research | - |
dc.title | CATVI: Conditional and Adaptively Truncated Variational Inference for Hierarchical Bayesian Nonparametric Models | - |
dc.type | Conference_Paper | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.scopus | eid_2-s2.0-85149632699 | - |
dc.identifier.volume | 151 | - |
dc.identifier.spage | 3647 | - |
dc.identifier.epage | 3662 | - |
dc.identifier.eissn | 2640-3498 | - |