File Download
Supplementary

Conference Paper: Rethink Query Optimization in HTAP Databases

TitleRethink Query Optimization in HTAP Databases
Authors
Issue Date9-Jun-2024
Abstract

The advent of data-intensive applications has fueled the evolution of hybrid transactional and analytical processing (HTAP). To support mixed workloads, distributed HTAP databases typically maintain two data copies that are specially tailored for data freshness and performance isolation. In particular, a copy in a row-oriented format is well-suited for OLTP workloads, and a second copy in a columnoriented format is optimized for OLAP workloads. Such a hybrid design opens up a new design space for query optimization: plans can be optimized over different data formats and can be executed over isolated resources, which we term hybrid plans.

In this paper, we demonstrate that hybrid plans can largely benefit query execution (e.g., up to 11× speedups in our evaluation). However, we also found these benefits will potentially be at the cost of sacrificing data freshness or performance isolation since traditional optimizers may not precisely model and schedule the execution of hybrid plans on real-time updated HTAP databases.

Therefore, we propose Metis, an HTAP-aware optimizer. We show, both theoretically and experimentally, that using the proposed optimizations, a system can largely benefit from hybrid plans while preserving isolated performance for OLTP and OLAP, and these optimizations are robust to the changes in workloads


Persistent Identifierhttp://hdl.handle.net/10722/337766

 

DC FieldValueLanguage
dc.contributor.authorSong, Haoze-
dc.contributor.authorZhou, Wenchao-
dc.contributor.authorLi, Feifei-
dc.contributor.authorPeng, Xiang-
dc.contributor.authorCui, Heming-
dc.date.accessioned2024-03-11T10:23:43Z-
dc.date.available2024-03-11T10:23:43Z-
dc.date.issued2024-06-09-
dc.identifier.urihttp://hdl.handle.net/10722/337766-
dc.description.abstract<p>The advent of data-intensive applications has fueled the evolution of hybrid transactional and analytical processing (HTAP). To support mixed workloads, distributed HTAP databases typically maintain two data copies that are specially tailored for data freshness and performance isolation. In particular, a copy in a row-oriented format is well-suited for OLTP workloads, and a second copy in a columnoriented format is optimized for OLAP workloads. Such a hybrid design opens up a new design space for query optimization: plans can be optimized over different data formats and can be executed over isolated resources, which we term hybrid plans.</p><p>In this paper, we demonstrate that hybrid plans can largely benefit query execution (e.g., up to 11× speedups in our evaluation). However, we also found these benefits will potentially be at the cost of sacrificing data freshness or performance isolation since traditional optimizers may not precisely model and schedule the execution of hybrid plans on real-time updated HTAP databases.</p><p>Therefore, we propose Metis, an HTAP-aware optimizer. We show, both theoretically and experimentally, that using the proposed optimizations, a system can largely benefit from hybrid plans while preserving isolated performance for OLTP and OLAP, and these optimizations are robust to the changes in workloads</p>-
dc.languageeng-
dc.relation.ispartof2024 ACM SIGMOD/PODS International Conference on Management of Data (09/06/2024-15/06/2024, Santiago)-
dc.titleRethink Query Optimization in HTAP Databases-
dc.typeConference_Paper-
dc.description.naturepreprint-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats