File Download
Supplementary
-
Citations:
- Appears in Collections:
Conference Paper: Rethink Query Optimization in HTAP Databases
Title | Rethink Query Optimization in HTAP Databases |
---|---|
Authors | |
Issue Date | 9-Jun-2024 |
Abstract | The advent of data-intensive applications has fueled the evolution of hybrid transactional and analytical processing (HTAP). To support mixed workloads, distributed HTAP databases typically maintain two data copies that are specially tailored for data freshness and performance isolation. In particular, a copy in a row-oriented format is well-suited for OLTP workloads, and a second copy in a columnoriented format is optimized for OLAP workloads. Such a hybrid design opens up a new design space for query optimization: plans can be optimized over different data formats and can be executed over isolated resources, which we term hybrid plans. In this paper, we demonstrate that hybrid plans can largely benefit query execution (e.g., up to 11× speedups in our evaluation). However, we also found these benefits will potentially be at the cost of sacrificing data freshness or performance isolation since traditional optimizers may not precisely model and schedule the execution of hybrid plans on real-time updated HTAP databases. Therefore, we propose Metis, an HTAP-aware optimizer. We show, both theoretically and experimentally, that using the proposed optimizations, a system can largely benefit from hybrid plans while preserving isolated performance for OLTP and OLAP, and these optimizations are robust to the changes in workloads |
Persistent Identifier | http://hdl.handle.net/10722/337766 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Song, Haoze | - |
dc.contributor.author | Zhou, Wenchao | - |
dc.contributor.author | Li, Feifei | - |
dc.contributor.author | Peng, Xiang | - |
dc.contributor.author | Cui, Heming | - |
dc.date.accessioned | 2024-03-11T10:23:43Z | - |
dc.date.available | 2024-03-11T10:23:43Z | - |
dc.date.issued | 2024-06-09 | - |
dc.identifier.uri | http://hdl.handle.net/10722/337766 | - |
dc.description.abstract | <p>The advent of data-intensive applications has fueled the evolution of hybrid transactional and analytical processing (HTAP). To support mixed workloads, distributed HTAP databases typically maintain two data copies that are specially tailored for data freshness and performance isolation. In particular, a copy in a row-oriented format is well-suited for OLTP workloads, and a second copy in a columnoriented format is optimized for OLAP workloads. Such a hybrid design opens up a new design space for query optimization: plans can be optimized over different data formats and can be executed over isolated resources, which we term hybrid plans.</p><p>In this paper, we demonstrate that hybrid plans can largely benefit query execution (e.g., up to 11× speedups in our evaluation). However, we also found these benefits will potentially be at the cost of sacrificing data freshness or performance isolation since traditional optimizers may not precisely model and schedule the execution of hybrid plans on real-time updated HTAP databases.</p><p>Therefore, we propose Metis, an HTAP-aware optimizer. We show, both theoretically and experimentally, that using the proposed optimizations, a system can largely benefit from hybrid plans while preserving isolated performance for OLTP and OLAP, and these optimizations are robust to the changes in workloads</p> | - |
dc.language | eng | - |
dc.relation.ispartof | 2024 ACM SIGMOD/PODS International Conference on Management of Data (09/06/2024-15/06/2024, Santiago) | - |
dc.title | Rethink Query Optimization in HTAP Databases | - |
dc.type | Conference_Paper | - |
dc.description.nature | preprint | - |