File Download
There are no files associated with this item.
Supplementary
-
Citations:
- Appears in Collections:
Conference Paper: POPQORN: Quantifying Robustness of Recurrent Neural Networks
Title | POPQORN: Quantifying Robustness of Recurrent Neural Networks |
---|---|
Authors | |
Issue Date | 10-Jun-2019 |
Persistent Identifier | http://hdl.handle.net/10722/339474 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ko, Ching-Yun | - |
dc.contributor.author | Lyu, Zhaoyang | - |
dc.contributor.author | Weng, Lily | - |
dc.contributor.author | Daniel, Luca | - |
dc.contributor.author | Wong, Ngai | - |
dc.contributor.author | Lin, Dahua | - |
dc.date.accessioned | 2024-03-11T10:36:56Z | - |
dc.date.available | 2024-03-11T10:36:56Z | - |
dc.date.issued | 2019-06-10 | - |
dc.identifier.uri | http://hdl.handle.net/10722/339474 | - |
dc.language | eng | - |
dc.relation.ispartof | 36th International Conference on Machine Learning (10/06/2019-15/06/2019, , , Long Beach Convention Center, Long Beach) | - |
dc.title | POPQORN: Quantifying Robustness of Recurrent Neural Networks | - |
dc.type | Conference_Paper | - |
dc.identifier.issue | 97 | - |