File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Improved Structural Order and Exciton Delocalization in High- Member Quasi-Two-Dimensional Tin Halide Perovskite Revealed by Electroabsorption Spectroscopy

TitleImproved Structural Order and Exciton Delocalization in High- Member Quasi-Two-Dimensional Tin Halide Perovskite Revealed by Electroabsorption Spectroscopy
Authors
Issue Date3-May-2023
PublisherAmerican Chemical Society
Citation
Journal of Physical Chemistry Letters, 2023, v. 14, n. 18, p. 4349-4356 How to Cite?
AbstractEngineering of quasi-two-dimensional (quasi-2D) tin halide perovskite structures is a promising pathway to achieve high-performance lead-free perovskite solar cells, with recently developed devices demonstrating over 14% efficiency. Despite the significant efficiency improvement over the bulk three-dimensional (3D) tin perovskite solar cells, the precise relationship between structural engineering and electron-hole (exciton) properties is not fully understood. Here, we study exciton properties in high-member quasi 2D tin perovskite (which is dominated by large n phases) and bulk 3D tin perovskite using electroabsorption (EA) spectroscopy. By numerically extracting the changes in polarizability and dipole moment between the excited and ground states, we show that more ordered and delocalized excitons are formed in the high-member quasi-2D film. This result indicates that the high-member quasi-2D tin perovskite film consists of more ordered crystal orientations and reduced defect density, which is in agreement with the over 5-fold increase in exciton lifetime and much improved solar cell efficiency in devices. Our results provide insights on the structure-property relationship of high-performance quasi-2D tin perovskite optoelectronic devices.
Persistent Identifierhttp://hdl.handle.net/10722/343865
ISSN
2023 Impact Factor: 4.8
2023 SCImago Journal Rankings: 1.586
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorXing, ZS-
dc.contributor.authorZang, ZH-
dc.contributor.authorLi, HS-
dc.contributor.authorNing, ZJ-
dc.contributor.authorWong, KS-
dc.contributor.authorChow, PCY-
dc.date.accessioned2024-06-13T08:14:49Z-
dc.date.available2024-06-13T08:14:49Z-
dc.date.issued2023-05-03-
dc.identifier.citationJournal of Physical Chemistry Letters, 2023, v. 14, n. 18, p. 4349-4356-
dc.identifier.issn1948-7185-
dc.identifier.urihttp://hdl.handle.net/10722/343865-
dc.description.abstractEngineering of quasi-two-dimensional (quasi-2D) tin halide perovskite structures is a promising pathway to achieve high-performance lead-free perovskite solar cells, with recently developed devices demonstrating over 14% efficiency. Despite the significant efficiency improvement over the bulk three-dimensional (3D) tin perovskite solar cells, the precise relationship between structural engineering and electron-hole (exciton) properties is not fully understood. Here, we study exciton properties in high-member quasi 2D tin perovskite (which is dominated by large n phases) and bulk 3D tin perovskite using electroabsorption (EA) spectroscopy. By numerically extracting the changes in polarizability and dipole moment between the excited and ground states, we show that more ordered and delocalized excitons are formed in the high-member quasi-2D film. This result indicates that the high-member quasi-2D tin perovskite film consists of more ordered crystal orientations and reduced defect density, which is in agreement with the over 5-fold increase in exciton lifetime and much improved solar cell efficiency in devices. Our results provide insights on the structure-property relationship of high-performance quasi-2D tin perovskite optoelectronic devices.-
dc.languageeng-
dc.publisherAmerican Chemical Society-
dc.relation.ispartofJournal of Physical Chemistry Letters-
dc.titleImproved Structural Order and Exciton Delocalization in High- Member Quasi-Two-Dimensional Tin Halide Perovskite Revealed by Electroabsorption Spectroscopy-
dc.typeArticle-
dc.identifier.doi10.1021/acs.jpclett.3c00400-
dc.identifier.pmid37134312-
dc.identifier.scopuseid_2-s2.0-85159605627-
dc.identifier.volume14-
dc.identifier.issue18-
dc.identifier.spage4349-
dc.identifier.epage4356-
dc.identifier.eissn1948-7185-
dc.identifier.isiWOS:000985522900001-
dc.publisher.placeWASHINGTON-
dc.identifier.issnl1948-7185-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats