File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Manipulating Skyrmion Motion on a Nanotrack with Varied Material Parameters and Tilted Spin Currents

TitleManipulating Skyrmion Motion on a Nanotrack with Varied Material Parameters and Tilted Spin Currents
Authors
Issue Date1-Sep-2023
PublisherIOP Publishing
Citation
Chinese Physics Letters, 2023, v. 40, n. 9, p. 1-6 How to Cite?
AbstractMagnetic skyrmions are topological quasiparticles with nanoscale size and high mobility, which have potential applications in information storage and spintronic devices. The manipulation of skyrmion’s dynamics in the track is an important topic due to the skyrmion Hall effect, which can deviate the skyrmions from the preferred direction. We propose a new model based on the ferromagnetic skyrmion, where the skyrmion velocity can be well controlled by adjusting the direction of the current. Using this design, we can avoid the annihilation of the skyrmion induced by the skyrmion Hall effect, which is confirmed by our micromagnetic simulation based on Mumax3. In the meantime, we increase the average velocity of the skyrmion by varying the intrinsic material parameters in the track, where the simulations agree well with our analytical results based on the Thiele equation. Finally, we give a phase diagram of the output of the skyrmion in the T-type track, which provides some practical ways for design of logic gates by manipulating crystalline anisotropy through the electrical control.
Persistent Identifierhttp://hdl.handle.net/10722/346162
ISSN
2023 Impact Factor: 3.5
2023 SCImago Journal Rankings: 0.815

 

DC FieldValueLanguage
dc.contributor.authorLuo, Jia-
dc.contributor.authorGuo, Jia Hao-
dc.contributor.authorHou, Yun He-
dc.contributor.authorWang, Jun Lin-
dc.contributor.authorXu, Yong Bing-
dc.contributor.authorZhou, Yan-
dc.contributor.authorPong, Philip Wing Tat-
dc.contributor.authorZhao, Guo Ping-
dc.date.accessioned2024-09-12T00:30:35Z-
dc.date.available2024-09-12T00:30:35Z-
dc.date.issued2023-09-01-
dc.identifier.citationChinese Physics Letters, 2023, v. 40, n. 9, p. 1-6-
dc.identifier.issn0256-307X-
dc.identifier.urihttp://hdl.handle.net/10722/346162-
dc.description.abstractMagnetic skyrmions are topological quasiparticles with nanoscale size and high mobility, which have potential applications in information storage and spintronic devices. The manipulation of skyrmion’s dynamics in the track is an important topic due to the skyrmion Hall effect, which can deviate the skyrmions from the preferred direction. We propose a new model based on the ferromagnetic skyrmion, where the skyrmion velocity can be well controlled by adjusting the direction of the current. Using this design, we can avoid the annihilation of the skyrmion induced by the skyrmion Hall effect, which is confirmed by our micromagnetic simulation based on Mumax3. In the meantime, we increase the average velocity of the skyrmion by varying the intrinsic material parameters in the track, where the simulations agree well with our analytical results based on the Thiele equation. Finally, we give a phase diagram of the output of the skyrmion in the T-type track, which provides some practical ways for design of logic gates by manipulating crystalline anisotropy through the electrical control.-
dc.languageeng-
dc.publisherIOP Publishing-
dc.relation.ispartofChinese Physics Letters-
dc.titleManipulating Skyrmion Motion on a Nanotrack with Varied Material Parameters and Tilted Spin Currents-
dc.typeArticle-
dc.identifier.doi10.1088/0256-307X/40/9/097501-
dc.identifier.scopuseid_2-s2.0-85173090274-
dc.identifier.volume40-
dc.identifier.issue9-
dc.identifier.spage1-
dc.identifier.epage6-
dc.identifier.eissn1741-3540-
dc.identifier.issnl0256-307X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats