File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1093/imrn/rnac321
- Scopus: eid_2-s2.0-85178259166
- Find via
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Configuration Poisson Groupoids of Flags
Title | Configuration Poisson Groupoids of Flags |
---|---|
Authors | |
Issue Date | 1-Nov-2023 |
Publisher | Oxford University Press |
Citation | International Mathematics Research Notices, 2023, v. 2023, n. 21, p. 18035-18107 How to Cite? |
Abstract | Let G be a connected complex semi-simple Lie group and B its f lag variety. For every positive integer n, we introduce a Poisson groupoid over Bn, called the nth total configuration Poisson groupoid of flags of G, which contains a family of Poisson sub-groupoids whose total spaces are generalized double Bruhat cells and bases generalized Schubert cells in Bn. Certain symplectic leaves of these Poisson sub-groupoids are then shown to be symplectic groupoids over generalized Schubert cells. We also give explicit descriptions of symplectic leaves in three series of Poisson varieties associated to G. |
Persistent Identifier | http://hdl.handle.net/10722/348351 |
ISSN | 2023 Impact Factor: 0.9 2023 SCImago Journal Rankings: 1.337 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lu, Jiang Hua | - |
dc.contributor.author | Mouquin, Victor | - |
dc.contributor.author | Yu, Shizhuo | - |
dc.date.accessioned | 2024-10-09T00:30:57Z | - |
dc.date.available | 2024-10-09T00:30:57Z | - |
dc.date.issued | 2023-11-01 | - |
dc.identifier.citation | International Mathematics Research Notices, 2023, v. 2023, n. 21, p. 18035-18107 | - |
dc.identifier.issn | 1073-7928 | - |
dc.identifier.uri | http://hdl.handle.net/10722/348351 | - |
dc.description.abstract | Let G be a connected complex semi-simple Lie group and B its f lag variety. For every positive integer n, we introduce a Poisson groupoid over Bn, called the nth total configuration Poisson groupoid of flags of G, which contains a family of Poisson sub-groupoids whose total spaces are generalized double Bruhat cells and bases generalized Schubert cells in Bn. Certain symplectic leaves of these Poisson sub-groupoids are then shown to be symplectic groupoids over generalized Schubert cells. We also give explicit descriptions of symplectic leaves in three series of Poisson varieties associated to G. | - |
dc.language | eng | - |
dc.publisher | Oxford University Press | - |
dc.relation.ispartof | International Mathematics Research Notices | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.title | Configuration Poisson Groupoids of Flags | - |
dc.type | Article | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.1093/imrn/rnac321 | - |
dc.identifier.scopus | eid_2-s2.0-85178259166 | - |
dc.identifier.volume | 2023 | - |
dc.identifier.issue | 21 | - |
dc.identifier.spage | 18035 | - |
dc.identifier.epage | 18107 | - |
dc.identifier.eissn | 1687-0247 | - |
dc.identifier.issnl | 1073-7928 | - |