File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/TCOMM.2022.3207804
- Scopus: eid_2-s2.0-85139411249
- Find via
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Intelligent Omni-Surfaces: Reflection-Refraction Circuit Model, Full-Dimensional Beamforming, and System Implementation
Title | Intelligent Omni-Surfaces: Reflection-Refraction Circuit Model, Full-Dimensional Beamforming, and System Implementation |
---|---|
Authors | |
Keywords | circuit-based reflection-refraction model full-dimensional beamforming Intelligent omni-surface prototype |
Issue Date | 2022 |
Citation | IEEE Transactions on Communications, 2022, v. 70, n. 11, p. 7711-7727 How to Cite? |
Abstract | The intelligent omni-surface (IOS) is a dynamic metasurface that has recently been proposed to achieve full-dimensional communications by realizing the dual function of anomalous reflection and anomalous refraction. Existing research works provide only simplified models for the reflection and refraction responses of the IOS, which do not explicitly depend on the physical structure of the IOS and the angle of incidence of the electromagnetic (EM) waves. Therefore, the available reflection-refraction models are insufficient to characterize the performance of full-dimensional communications. In this paper, we propose a complete and detailed circuit-based reflection-refraction model for the IOS, which is formulated in terms of the physical structure and equivalent circuits of the IOS elements, as well as we validate it with the aid of full-wave EM simulations. Based on the proposed circuit-based model for the IOS, we analyze the asymmetry between the reflection and transmission coefficients. Moreover, the proposed circuit-based model is utilized for optimizing the hybrid beamforming of IOS-assisted networks and hence improving the system performance. To verify the circuit-based model, the theoretical findings, and to evaluate the performance of full-dimensional beamforming, we implement a prototype of IOS and deploy an IOS-assisted wireless communication testbed to experimentally measure the beam patterns and to quantify the achievable rate. The obtained experimental results validate the theoretical findings and the accuracy of the proposed circuit-based reflection-refraction model for IOSs. |
Persistent Identifier | http://hdl.handle.net/10722/349798 |
ISSN | 2023 Impact Factor: 7.2 2020 SCImago Journal Rankings: 1.468 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zeng, Shuhao | - |
dc.contributor.author | Zhang, Hongliang | - |
dc.contributor.author | Di, Boya | - |
dc.contributor.author | Liu, Yuanwei | - |
dc.contributor.author | Renzo, Marco Di | - |
dc.contributor.author | Han, Zhu | - |
dc.contributor.author | Poor, H. Vincent | - |
dc.contributor.author | Song, Lingyang | - |
dc.date.accessioned | 2024-10-17T07:00:53Z | - |
dc.date.available | 2024-10-17T07:00:53Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | IEEE Transactions on Communications, 2022, v. 70, n. 11, p. 7711-7727 | - |
dc.identifier.issn | 0090-6778 | - |
dc.identifier.uri | http://hdl.handle.net/10722/349798 | - |
dc.description.abstract | The intelligent omni-surface (IOS) is a dynamic metasurface that has recently been proposed to achieve full-dimensional communications by realizing the dual function of anomalous reflection and anomalous refraction. Existing research works provide only simplified models for the reflection and refraction responses of the IOS, which do not explicitly depend on the physical structure of the IOS and the angle of incidence of the electromagnetic (EM) waves. Therefore, the available reflection-refraction models are insufficient to characterize the performance of full-dimensional communications. In this paper, we propose a complete and detailed circuit-based reflection-refraction model for the IOS, which is formulated in terms of the physical structure and equivalent circuits of the IOS elements, as well as we validate it with the aid of full-wave EM simulations. Based on the proposed circuit-based model for the IOS, we analyze the asymmetry between the reflection and transmission coefficients. Moreover, the proposed circuit-based model is utilized for optimizing the hybrid beamforming of IOS-assisted networks and hence improving the system performance. To verify the circuit-based model, the theoretical findings, and to evaluate the performance of full-dimensional beamforming, we implement a prototype of IOS and deploy an IOS-assisted wireless communication testbed to experimentally measure the beam patterns and to quantify the achievable rate. The obtained experimental results validate the theoretical findings and the accuracy of the proposed circuit-based reflection-refraction model for IOSs. | - |
dc.language | eng | - |
dc.relation.ispartof | IEEE Transactions on Communications | - |
dc.subject | circuit-based reflection-refraction model | - |
dc.subject | full-dimensional beamforming | - |
dc.subject | Intelligent omni-surface | - |
dc.subject | prototype | - |
dc.title | Intelligent Omni-Surfaces: Reflection-Refraction Circuit Model, Full-Dimensional Beamforming, and System Implementation | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1109/TCOMM.2022.3207804 | - |
dc.identifier.scopus | eid_2-s2.0-85139411249 | - |
dc.identifier.volume | 70 | - |
dc.identifier.issue | 11 | - |
dc.identifier.spage | 7711 | - |
dc.identifier.epage | 7727 | - |
dc.identifier.eissn | 1558-0857 | - |