File Download
There are no files associated with this item.
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Conference Paper: Exploring lag diversity in the high-order ambiguity function for polynomial phase signals
| Title | Exploring lag diversity in the high-order ambiguity function for polynomial phase signals |
|---|---|
| Authors | |
| Issue Date | 1997 |
| Citation | IEEE Signal Processing Workshop on Higher Order Statistics Proceedings, 1997, p. 103-106 How to Cite? |
| Abstract | High-order ambiguity function (HAF) is an effective tool for retrieving coefficients of polynomial phase signals (PPS). The lag choice is dictated by conflicting requirements: a large lag improves estimation accuracy but drastically limits the range of the parameters that can be estimated. By using two (large) co-prime lags and solving linear Diophantine equations using the Euclidean algorithm, we are able to recover the PPS coefficients from aliased peak positions without compromising the dynamic range and the estimation accuracy. Separating components of a multi-component PPS whose phase polynomials have very similar leading coefficients has been a challenging task, but can now be tackled easily with the two-lag approach. Numerical examples are presented to illustrate the effectiveness of our method. |
| Persistent Identifier | http://hdl.handle.net/10722/362968 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Zhou, G. Tong | - |
| dc.contributor.author | Wang, Yang | - |
| dc.date.accessioned | 2025-10-10T07:43:46Z | - |
| dc.date.available | 2025-10-10T07:43:46Z | - |
| dc.date.issued | 1997 | - |
| dc.identifier.citation | IEEE Signal Processing Workshop on Higher Order Statistics Proceedings, 1997, p. 103-106 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/362968 | - |
| dc.description.abstract | High-order ambiguity function (HAF) is an effective tool for retrieving coefficients of polynomial phase signals (PPS). The lag choice is dictated by conflicting requirements: a large lag improves estimation accuracy but drastically limits the range of the parameters that can be estimated. By using two (large) co-prime lags and solving linear Diophantine equations using the Euclidean algorithm, we are able to recover the PPS coefficients from aliased peak positions without compromising the dynamic range and the estimation accuracy. Separating components of a multi-component PPS whose phase polynomials have very similar leading coefficients has been a challenging task, but can now be tackled easily with the two-lag approach. Numerical examples are presented to illustrate the effectiveness of our method. | - |
| dc.language | eng | - |
| dc.relation.ispartof | IEEE Signal Processing Workshop on Higher Order Statistics Proceedings | - |
| dc.title | Exploring lag diversity in the high-order ambiguity function for polynomial phase signals | - |
| dc.type | Conference_Paper | - |
| dc.description.nature | link_to_subscribed_fulltext | - |
| dc.identifier.scopus | eid_2-s2.0-0030652932 | - |
| dc.identifier.spage | 103 | - |
| dc.identifier.epage | 106 | - |
