File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Some properties of spectral measures

TitleSome properties of spectral measures
Authors
Issue Date2006
Citation
Applied and Computational Harmonic Analysis, 2006, v. 20, n. 1, p. 149-157 How to Cite?
AbstractA Borel measure μ in Rd is called a spectral measure if there exists a set Λ⊂Rd such that the set of exponentials {exp(2πiλṡ x):λ∈Λ} forms an orthogonal basis for L2(μ). In this letter we prove some properties of spectral measures. In particular, we prove results that highlight the 3/2-rule. © 2005 Elsevier Inc. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/363084
ISSN
2023 Impact Factor: 2.6
2023 SCImago Journal Rankings: 2.231

 

DC FieldValueLanguage
dc.contributor.authorŁaba, Izabella-
dc.contributor.authorWang, Yang-
dc.date.accessioned2025-10-10T07:44:29Z-
dc.date.available2025-10-10T07:44:29Z-
dc.date.issued2006-
dc.identifier.citationApplied and Computational Harmonic Analysis, 2006, v. 20, n. 1, p. 149-157-
dc.identifier.issn1063-5203-
dc.identifier.urihttp://hdl.handle.net/10722/363084-
dc.description.abstractA Borel measure μ in Rd is called a spectral measure if there exists a set Λ⊂Rd such that the set of exponentials {exp(2πiλṡ x):λ∈Λ} forms an orthogonal basis for L2(μ). In this letter we prove some properties of spectral measures. In particular, we prove results that highlight the 3/2-rule. © 2005 Elsevier Inc. All rights reserved.-
dc.languageeng-
dc.relation.ispartofApplied and Computational Harmonic Analysis-
dc.titleSome properties of spectral measures-
dc.typeConference_Paper-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.acha.2005.03.003-
dc.identifier.scopuseid_2-s2.0-32044439863-
dc.identifier.volume20-
dc.identifier.issue1-
dc.identifier.spage149-
dc.identifier.epage157-
dc.identifier.eissn1096-603X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats