File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/ICIP46576.2022.9897750
- Scopus: eid_2-s2.0-85144983363
- Find via

Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Conference Paper: VARIANCE-REDUCED RANDOMIZED KACZMARZ ALGORITHM IN XFEL SINGLE-PARTICLE IMAGING PHASE RETRIEVAL
| Title | VARIANCE-REDUCED RANDOMIZED KACZMARZ ALGORITHM IN XFEL SINGLE-PARTICLE IMAGING PHASE RETRIEVAL |
|---|---|
| Authors | |
| Keywords | Phase retrieval randomized Kaczmarz stochastic optimization variance reduction XFEL single particle imaging |
| Issue Date | 2022 |
| Citation | Proceedings International Conference on Image Processing Icip, 2022, p. 3186-3190 How to Cite? |
| Abstract | In this paper, we propose the Variance Reduced Randomized Kaczmarz (VR-RK) algorithm for XFEL signal particle imaging phase retrieval. The VR-RK algorithm is inspired by the randomized Kaczmarz algorithm and the variance reduction in stochastic gradient methods. The formulations of the VR-RK algorithm under the L |
| Persistent Identifier | http://hdl.handle.net/10722/363507 |
| ISSN | 2020 SCImago Journal Rankings: 0.315 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Xian, Yin | - |
| dc.contributor.author | Liu, Haiguang | - |
| dc.contributor.author | Tai, Xuecheng | - |
| dc.contributor.author | Wang, Yang | - |
| dc.date.accessioned | 2025-10-10T07:47:23Z | - |
| dc.date.available | 2025-10-10T07:47:23Z | - |
| dc.date.issued | 2022 | - |
| dc.identifier.citation | Proceedings International Conference on Image Processing Icip, 2022, p. 3186-3190 | - |
| dc.identifier.issn | 1522-4880 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/363507 | - |
| dc.description.abstract | In this paper, we propose the Variance Reduced Randomized Kaczmarz (VR-RK) algorithm for XFEL signal particle imaging phase retrieval. The VR-RK algorithm is inspired by the randomized Kaczmarz algorithm and the variance reduction in stochastic gradient methods. The formulations of the VR-RK algorithm under the L<inf>1</inf> and L<inf>2</inf> constraints are also presented. Numerical simulations demonstrate that the VR-RK method has a faster convergence rate compared with the randomized Kaczmarz method. Tests on the synthetic signal particle imaging data and the PR772 XFEL real imaging data show that the VR-RK algorithm can recover information with higher accuracy. It is useful for biological data processing. | - |
| dc.language | eng | - |
| dc.relation.ispartof | Proceedings International Conference on Image Processing Icip | - |
| dc.subject | Phase retrieval | - |
| dc.subject | randomized Kaczmarz | - |
| dc.subject | stochastic optimization | - |
| dc.subject | variance reduction | - |
| dc.subject | XFEL single particle imaging | - |
| dc.title | VARIANCE-REDUCED RANDOMIZED KACZMARZ ALGORITHM IN XFEL SINGLE-PARTICLE IMAGING PHASE RETRIEVAL | - |
| dc.type | Conference_Paper | - |
| dc.description.nature | link_to_subscribed_fulltext | - |
| dc.identifier.doi | 10.1109/ICIP46576.2022.9897750 | - |
| dc.identifier.scopus | eid_2-s2.0-85144983363 | - |
| dc.identifier.spage | 3186 | - |
| dc.identifier.epage | 3190 | - |
