File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: VARIANCE-REDUCED RANDOMIZED KACZMARZ ALGORITHM IN XFEL SINGLE-PARTICLE IMAGING PHASE RETRIEVAL

TitleVARIANCE-REDUCED RANDOMIZED KACZMARZ ALGORITHM IN XFEL SINGLE-PARTICLE IMAGING PHASE RETRIEVAL
Authors
KeywordsPhase retrieval
randomized Kaczmarz
stochastic optimization
variance reduction
XFEL single particle imaging
Issue Date2022
Citation
Proceedings International Conference on Image Processing Icip, 2022, p. 3186-3190 How to Cite?
AbstractIn this paper, we propose the Variance Reduced Randomized Kaczmarz (VR-RK) algorithm for XFEL signal particle imaging phase retrieval. The VR-RK algorithm is inspired by the randomized Kaczmarz algorithm and the variance reduction in stochastic gradient methods. The formulations of the VR-RK algorithm under the L1 and L2 constraints are also presented. Numerical simulations demonstrate that the VR-RK method has a faster convergence rate compared with the randomized Kaczmarz method. Tests on the synthetic signal particle imaging data and the PR772 XFEL real imaging data show that the VR-RK algorithm can recover information with higher accuracy. It is useful for biological data processing.
Persistent Identifierhttp://hdl.handle.net/10722/363507
ISSN
2020 SCImago Journal Rankings: 0.315

 

DC FieldValueLanguage
dc.contributor.authorXian, Yin-
dc.contributor.authorLiu, Haiguang-
dc.contributor.authorTai, Xuecheng-
dc.contributor.authorWang, Yang-
dc.date.accessioned2025-10-10T07:47:23Z-
dc.date.available2025-10-10T07:47:23Z-
dc.date.issued2022-
dc.identifier.citationProceedings International Conference on Image Processing Icip, 2022, p. 3186-3190-
dc.identifier.issn1522-4880-
dc.identifier.urihttp://hdl.handle.net/10722/363507-
dc.description.abstractIn this paper, we propose the Variance Reduced Randomized Kaczmarz (VR-RK) algorithm for XFEL signal particle imaging phase retrieval. The VR-RK algorithm is inspired by the randomized Kaczmarz algorithm and the variance reduction in stochastic gradient methods. The formulations of the VR-RK algorithm under the L<inf>1</inf> and L<inf>2</inf> constraints are also presented. Numerical simulations demonstrate that the VR-RK method has a faster convergence rate compared with the randomized Kaczmarz method. Tests on the synthetic signal particle imaging data and the PR772 XFEL real imaging data show that the VR-RK algorithm can recover information with higher accuracy. It is useful for biological data processing.-
dc.languageeng-
dc.relation.ispartofProceedings International Conference on Image Processing Icip-
dc.subjectPhase retrieval-
dc.subjectrandomized Kaczmarz-
dc.subjectstochastic optimization-
dc.subjectvariance reduction-
dc.subjectXFEL single particle imaging-
dc.titleVARIANCE-REDUCED RANDOMIZED KACZMARZ ALGORITHM IN XFEL SINGLE-PARTICLE IMAGING PHASE RETRIEVAL-
dc.typeConference_Paper-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1109/ICIP46576.2022.9897750-
dc.identifier.scopuseid_2-s2.0-85144983363-
dc.identifier.spage3186-
dc.identifier.epage3190-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats