File Download
There are no files associated with this item.
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Conference Paper: Generalized equivalences between subsampling and ridge regularization
| Title | Generalized equivalences between subsampling and ridge regularization |
|---|---|
| Authors | |
| Issue Date | 2023 |
| Citation | Advances in Neural Information Processing Systems, 2023, v. 36 How to Cite? |
| Abstract | We establish precise structural and risk equivalences between subsampling and ridge regularization for ensemble ridge estimators. Specifically, we prove that linear and quadratic functionals of subsample ridge estimators, when fitted with different ridge regularization levels λ and subsample aspect ratios ψ, are asymptotically equivalent along specific paths in the (λ, ψ)-plane (where ψ is the ratio of the feature dimension to the subsample size). Our results only require bounded moment assumptions on feature and response distributions and allow for arbitrary joint distributions. Furthermore, we provide a data-dependent method to determine the equivalent paths of (λ, ψ). An indirect implication of our equivalences is that optimally tuned ridge regression exhibits a monotonic prediction risk in the data aspect ratio. This resolves a recent open problem raised by Nakkiran et al. [1] for general data distributions under proportional asymptotics, assuming a mild regularity condition that maintains regression hardness through linearized signal-to-noise ratios. |
| Persistent Identifier | http://hdl.handle.net/10722/365529 |
| ISSN | 2020 SCImago Journal Rankings: 1.399 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Patil, Pratik | - |
| dc.contributor.author | Du, Jin Hong | - |
| dc.date.accessioned | 2025-11-05T09:41:17Z | - |
| dc.date.available | 2025-11-05T09:41:17Z | - |
| dc.date.issued | 2023 | - |
| dc.identifier.citation | Advances in Neural Information Processing Systems, 2023, v. 36 | - |
| dc.identifier.issn | 1049-5258 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/365529 | - |
| dc.description.abstract | We establish precise structural and risk equivalences between subsampling and ridge regularization for ensemble ridge estimators. Specifically, we prove that linear and quadratic functionals of subsample ridge estimators, when fitted with different ridge regularization levels λ and subsample aspect ratios ψ, are asymptotically equivalent along specific paths in the (λ, ψ)-plane (where ψ is the ratio of the feature dimension to the subsample size). Our results only require bounded moment assumptions on feature and response distributions and allow for arbitrary joint distributions. Furthermore, we provide a data-dependent method to determine the equivalent paths of (λ, ψ). An indirect implication of our equivalences is that optimally tuned ridge regression exhibits a monotonic prediction risk in the data aspect ratio. This resolves a recent open problem raised by Nakkiran et al. [1] for general data distributions under proportional asymptotics, assuming a mild regularity condition that maintains regression hardness through linearized signal-to-noise ratios. | - |
| dc.language | eng | - |
| dc.relation.ispartof | Advances in Neural Information Processing Systems | - |
| dc.title | Generalized equivalences between subsampling and ridge regularization | - |
| dc.type | Conference_Paper | - |
| dc.description.nature | link_to_subscribed_fulltext | - |
| dc.identifier.scopus | eid_2-s2.0-85190880558 | - |
| dc.identifier.volume | 36 | - |

