File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)

Article: Chemically Programmable Fano Resonances via Colloidal Nanocrystal-Ligand Chemistry for Ultra-Sensitive Ion Detection

TitleChemically Programmable Fano Resonances via Colloidal Nanocrystal-Ligand Chemistry for Ultra-Sensitive Ion Detection
Authors
Keywordschemically tuned optical index
colloidal metal nanocrystal
machine-learning-based spectral analysis
plasmonic chemical sensing
thin-film-based fano resonator
Issue Date6-Oct-2025
PublisherWiley
Citation
Advanced Functional Materials, 2025 How to Cite?
AbstractThin-film-based Fano resonators (TFFRs) offer a promising route to scalable, high-sensitivity refractive index (RI) sensing without complex nanostructure fabrication. However, their vacuum-deposited, porous, and lossy dielectrics are limited compositionally to perform ion detection in biochemical applications. This study introduces an ion-responsive TFFR platform by integrating two resonators, namely a colloidal metal nanocrystal (NC) film and a metal–insulator–metal (MIM) cavity. Upon precise ligand ion treatment, the solution-processed NC film can provide widely tunable RI for coupling with the MIM cavity, enabling continuous spectral tuning of the TFFR between Fano and Lorentzian line shapes in calculations. It showcases this design using Au and Ag NCs and SCN and Cl ligand ions, respectively. Chemical, structural, and optical analyses track the RI evolution within the NC film as the ligand ion concentration changes stepwise from 1 × 10−6 to 10 mg mL−1, revealing reproducibility and sample-to-sample variation <3.5%. The measured distinctive spectral signatures corroborate simulations to enable efficient machine learning algorithms that predict SCN concentrations below 1 × 10−3 mg mL−1 with 97.4% accuracy. The NC/MIM TFFR achieves electrode-free detection of SCN and Cl ions with exceptional detection limits of 245.6 and 3.83 nmol L−1, respectively, in a dynamic range exceeding 10⁷.
Persistent Identifierhttp://hdl.handle.net/10722/367340
ISSN
2023 Impact Factor: 18.5
2023 SCImago Journal Rankings: 5.496

 

DC FieldValueLanguage
dc.contributor.authorAn, Ran-
dc.contributor.authorJiang, Zhihan-
dc.contributor.authorCao, Qiyu-
dc.contributor.authorZhang, Shuang-
dc.contributor.authorNgai, Edith C.H.-
dc.contributor.authorZhao, Tianshuo-
dc.date.accessioned2025-12-10T08:06:38Z-
dc.date.available2025-12-10T08:06:38Z-
dc.date.issued2025-10-06-
dc.identifier.citationAdvanced Functional Materials, 2025-
dc.identifier.issn1616-301X-
dc.identifier.urihttp://hdl.handle.net/10722/367340-
dc.description.abstractThin-film-based Fano resonators (TFFRs) offer a promising route to scalable, high-sensitivity refractive index (RI) sensing without complex nanostructure fabrication. However, their vacuum-deposited, porous, and lossy dielectrics are limited compositionally to perform ion detection in biochemical applications. This study introduces an ion-responsive TFFR platform by integrating two resonators, namely a colloidal metal nanocrystal (NC) film and a metal–insulator–metal (MIM) cavity. Upon precise ligand ion treatment, the solution-processed NC film can provide widely tunable RI for coupling with the MIM cavity, enabling continuous spectral tuning of the TFFR between Fano and Lorentzian line shapes in calculations. It showcases this design using Au and Ag NCs and SCN<sup>−</sup> and Cl<sup>−</sup> ligand ions, respectively. Chemical, structural, and optical analyses track the RI evolution within the NC film as the ligand ion concentration changes stepwise from 1 × 10<sup>−6</sup> to 10 mg mL<sup>−1</sup>, revealing reproducibility and sample-to-sample variation <3.5%. The measured distinctive spectral signatures corroborate simulations to enable efficient machine learning algorithms that predict SCN<sup>−</sup> concentrations below 1 × 10<sup>−3</sup> mg mL<sup>−1</sup> with 97.4% accuracy. The NC/MIM TFFR achieves electrode-free detection of SCN<sup>−</sup> and Cl<sup>−</sup> ions with exceptional detection limits of 245.6 and 3.83 nmol L<sup>−1</sup>, respectively, in a dynamic range exceeding 10⁷.-
dc.languageeng-
dc.publisherWiley-
dc.relation.ispartofAdvanced Functional Materials-
dc.subjectchemically tuned optical index-
dc.subjectcolloidal metal nanocrystal-
dc.subjectmachine-learning-based spectral analysis-
dc.subjectplasmonic chemical sensing-
dc.subjectthin-film-based fano resonator-
dc.titleChemically Programmable Fano Resonances via Colloidal Nanocrystal-Ligand Chemistry for Ultra-Sensitive Ion Detection-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.202519477-
dc.identifier.scopuseid_2-s2.0-105018500943-
dc.identifier.eissn1616-3028-
dc.identifier.issnl1616-301X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats