File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1117/1.1645849
- Scopus: eid_2-s2.0-2342650830
- WOS: WOS:000220552400009
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Highly accurate texture-based vehicle segmentation method
Title | Highly accurate texture-based vehicle segmentation method |
---|---|
Authors | |
Keywords | Intelligent transportation systems Shadow detection Texture analysis Vehicle segmentation Visual traffic surveillance |
Issue Date | 2004 |
Publisher | S P I E - International Society for Optical Engineering. The Journal's web site is located at http://www.spie.org/oe |
Citation | Optical Engineering, 2004, v. 43 n. 3, p. 591-603 How to Cite? |
Abstract | In modern traffic surveillance, computer vision methods have often been employed to detect vehicles of interest because of the rich information content contained in an image. Segmentation of moving vehicles using image processing and analysis algorithms has been an important research topic in the past decade. However, segmentation results are strongly affected by two issues: moving cast shadows and reflective regions, both of which reduce accuracy and require postprocessing to alleviate the degradation. We propose an efficient and highly accurate texture-based method for extracting the boundary of vehicles from the stationary background that is free from the effect of moving cast shadows and reflective regions. The segmentation method utilizes the differences in textural property between the road, vehicle cast shadow, reflection on the vehicle, and the vehicle itself, rather than just the intensity differences between them. By further combining the luminance and chrominance properties into an OR map, a number of foreground vehicle masks are constructed through a series of morphological operations, where each mask describes the outline of a moving vehicle. The proposed method has been tested on real-world traffic image sequences and achieved an average error rate of 3.44% for 50 tested vehicle images. © 2004 Society of Photo-Optical Instrumentation Engineers. |
Persistent Identifier | http://hdl.handle.net/10722/42977 |
ISSN | 2023 Impact Factor: 1.1 2023 SCImago Journal Rankings: 0.331 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lam, WWL | en_HK |
dc.contributor.author | Pang, CCC | en_HK |
dc.contributor.author | Yung, NHC | en_HK |
dc.date.accessioned | 2007-03-23T04:35:54Z | - |
dc.date.available | 2007-03-23T04:35:54Z | - |
dc.date.issued | 2004 | en_HK |
dc.identifier.citation | Optical Engineering, 2004, v. 43 n. 3, p. 591-603 | en_HK |
dc.identifier.issn | 0091-3286 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/42977 | - |
dc.description.abstract | In modern traffic surveillance, computer vision methods have often been employed to detect vehicles of interest because of the rich information content contained in an image. Segmentation of moving vehicles using image processing and analysis algorithms has been an important research topic in the past decade. However, segmentation results are strongly affected by two issues: moving cast shadows and reflective regions, both of which reduce accuracy and require postprocessing to alleviate the degradation. We propose an efficient and highly accurate texture-based method for extracting the boundary of vehicles from the stationary background that is free from the effect of moving cast shadows and reflective regions. The segmentation method utilizes the differences in textural property between the road, vehicle cast shadow, reflection on the vehicle, and the vehicle itself, rather than just the intensity differences between them. By further combining the luminance and chrominance properties into an OR map, a number of foreground vehicle masks are constructed through a series of morphological operations, where each mask describes the outline of a moving vehicle. The proposed method has been tested on real-world traffic image sequences and achieved an average error rate of 3.44% for 50 tested vehicle images. © 2004 Society of Photo-Optical Instrumentation Engineers. | en_HK |
dc.format.extent | 1134085 bytes | - |
dc.format.extent | 5183 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | text/plain | - |
dc.language | eng | en_HK |
dc.publisher | S P I E - International Society for Optical Engineering. The Journal's web site is located at http://www.spie.org/oe | en_HK |
dc.relation.ispartof | Optical Engineering | en_HK |
dc.rights | Copyright 2004 Society of Photo‑Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited. This article is available online at https://doi.org/10.1117/1.1645849 | - |
dc.subject | Intelligent transportation systems | en_HK |
dc.subject | Shadow detection | en_HK |
dc.subject | Texture analysis | en_HK |
dc.subject | Vehicle segmentation | en_HK |
dc.subject | Visual traffic surveillance | en_HK |
dc.title | Highly accurate texture-based vehicle segmentation method | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0091-3286&volume=43&issue=3&spage=591&epage=603&date=2004&atitle=Highly+accurate+texture-based+vehicle+segmentation+method | en_HK |
dc.identifier.email | Yung, NHC:nyung@eee.hku.hk | en_HK |
dc.identifier.authority | Yung, NHC=rp00226 | en_HK |
dc.description.nature | published_or_final_version | en_HK |
dc.identifier.doi | 10.1117/1.1645849 | en_HK |
dc.identifier.scopus | eid_2-s2.0-2342650830 | en_HK |
dc.identifier.hkuros | 91670 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-2342650830&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 43 | en_HK |
dc.identifier.issue | 3 | en_HK |
dc.identifier.spage | 591 | en_HK |
dc.identifier.epage | 603 | en_HK |
dc.identifier.isi | WOS:000220552400009 | - |
dc.publisher.place | United States | en_HK |
dc.identifier.scopusauthorid | Lam, WWL=16836339900 | en_HK |
dc.identifier.scopusauthorid | Pang, CCC=7201425202 | en_HK |
dc.identifier.scopusauthorid | Yung, NHC=7003473369 | en_HK |
dc.identifier.issnl | 0091-3286 | - |