File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Local stability of limit cycles for time-delay relay-feedback systems

TitleLocal stability of limit cycles for time-delay relay-feedback systems
Authors
KeywordsHysteresis
Limit cycles
Local stability
Relay-feedback systems
Time delay
Issue Date2002
PublisherIEEE.
Citation
Ieee Transactions On Circuits And Systems I: Fundamental Theory And Applications, 2002, v. 49 n. 12, p. 1870-1875 How to Cite?
AbstractThis brief is concerned with the local stability of limit cycles for linear systems under relay feedback, for the cases where the linear system includes a time-delay in its dynamics and the relay can possess asymmetric hysteresis. The limit cycle considered can be asymmetric, have more than two switchings a period, zero output derivatives at the switching instants. It shows that if a certain constructed matrix is Schur stable, then, the local stability of the considered limit cycle is guaranteed. The effectiveness of the presented results is illustrated by a numerical example.
Persistent Identifierhttp://hdl.handle.net/10722/43051
ISSN
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorLin, Cen_HK
dc.contributor.authorWang, QGen_HK
dc.contributor.authorLee, THen_HK
dc.contributor.authorLam, Jen_HK
dc.date.accessioned2007-03-23T04:37:40Z-
dc.date.available2007-03-23T04:37:40Z-
dc.date.issued2002en_HK
dc.identifier.citationIeee Transactions On Circuits And Systems I: Fundamental Theory And Applications, 2002, v. 49 n. 12, p. 1870-1875en_HK
dc.identifier.issn1057-7122en_HK
dc.identifier.urihttp://hdl.handle.net/10722/43051-
dc.description.abstractThis brief is concerned with the local stability of limit cycles for linear systems under relay feedback, for the cases where the linear system includes a time-delay in its dynamics and the relay can possess asymmetric hysteresis. The limit cycle considered can be asymmetric, have more than two switchings a period, zero output derivatives at the switching instants. It shows that if a certain constructed matrix is Schur stable, then, the local stability of the considered limit cycle is guaranteed. The effectiveness of the presented results is illustrated by a numerical example.en_HK
dc.format.extent399669 bytes-
dc.format.extent35328 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/msword-
dc.languageengen_HK
dc.publisherIEEE.en_HK
dc.relation.ispartofIEEE Transactions on Circuits and Systems I: Fundamental Theory and Applicationsen_HK
dc.rights©2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.-
dc.subjectHysteresisen_HK
dc.subjectLimit cyclesen_HK
dc.subjectLocal stabilityen_HK
dc.subjectRelay-feedback systemsen_HK
dc.subjectTime delayen_HK
dc.titleLocal stability of limit cycles for time-delay relay-feedback systemsen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1057-7122&volume=49&issue=12&spage=1870&epage=1875&date=2002&atitle=Local+stability+of+limit+cycles+for+time-delay+relay-feedback+systemsen_HK
dc.identifier.emailLam, J:james.lam@hku.hken_HK
dc.identifier.authorityLam, J=rp00133en_HK
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.doi10.1109/TCSI.2002.805732en_HK
dc.identifier.scopuseid_2-s2.0-0036961752en_HK
dc.identifier.hkuros79125-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0036961752&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume49en_HK
dc.identifier.issue12en_HK
dc.identifier.spage1870en_HK
dc.identifier.epage1875en_HK
dc.identifier.isiWOS:000180273100024-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridLin, C=11139324700en_HK
dc.identifier.scopusauthoridWang, QG=7408170159en_HK
dc.identifier.scopusauthoridLee, TH=24780933300en_HK
dc.identifier.scopusauthoridLam, J=7201973414en_HK
dc.identifier.issnl1057-7122-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats