File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/TIT.2004.833334
- Scopus: eid_2-s2.0-4544383618
- WOS: WOS:000223579500013
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Capacity of memoryless channels and block-fading channels with designable cardinality-constrained channel state feedback
Title | Capacity of memoryless channels and block-fading channels with designable cardinality-constrained channel state feedback |
---|---|
Authors | |
Keywords | Channel capacity fading channels partial channel state information at the transmitter (CSIT) partial feedback |
Issue Date | 2004 |
Publisher | IEEE. The Journal's web site is located at http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?puNumber=18 |
Citation | IEEE Transactions on Information Theory, 2004, v. 50 n. 9, p. 2038-2049 How to Cite? |
Abstract | A coding theorem is proved for memoryless channels when the channel state feedback of finite cardinality can be designed. Channel state information is estimated at the receiver and a function of the estimated channel state is causally fed back to the transmitter. The feedback link is assumed to be noiseless with a finite feedback alphabet, or equivalently, finite feedback rate. It is shown that the capacity can be achieved with a memoryless deterministic feedback and with a memoryless device which select transmitted symbols from a codeword of expanded alphabet according to current feedback. To characterize the capacity, we investigate the optimization of transmission and channel state feedback strategies. The optimization is performed for both channel capacity and error exponents. We show that the design of the optimal feedback scheme is identical to the design of scalar quantizer with modified distortion measures. We illustrate the optimization using Rayleigh block-fading channels. It is shown that the optimal transmission strategy has a general form of temporal water-filling in important cases. Furthermore, while feedback enhances the forward channel capacity more effectively in low-signal-to noise ratio (SNR) region compared with that of high-SNR region, the enhancement in error exponent is significant in both high- and low-SNR regions. This indicates that significant gain due to finite-rate channel state feedback is expected in practical systems in both SNR regions. |
Persistent Identifier | http://hdl.handle.net/10722/44777 |
ISSN | 2023 Impact Factor: 2.2 2023 SCImago Journal Rankings: 1.607 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lau, VKN | en_HK |
dc.contributor.author | Liu, YJ | en_HK |
dc.contributor.author | Chen, TA | en_HK |
dc.date.accessioned | 2007-10-30T06:10:00Z | - |
dc.date.available | 2007-10-30T06:10:00Z | - |
dc.date.issued | 2004 | en_HK |
dc.identifier.citation | IEEE Transactions on Information Theory, 2004, v. 50 n. 9, p. 2038-2049 | en_HK |
dc.identifier.issn | 0018-9448 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/44777 | - |
dc.description.abstract | A coding theorem is proved for memoryless channels when the channel state feedback of finite cardinality can be designed. Channel state information is estimated at the receiver and a function of the estimated channel state is causally fed back to the transmitter. The feedback link is assumed to be noiseless with a finite feedback alphabet, or equivalently, finite feedback rate. It is shown that the capacity can be achieved with a memoryless deterministic feedback and with a memoryless device which select transmitted symbols from a codeword of expanded alphabet according to current feedback. To characterize the capacity, we investigate the optimization of transmission and channel state feedback strategies. The optimization is performed for both channel capacity and error exponents. We show that the design of the optimal feedback scheme is identical to the design of scalar quantizer with modified distortion measures. We illustrate the optimization using Rayleigh block-fading channels. It is shown that the optimal transmission strategy has a general form of temporal water-filling in important cases. Furthermore, while feedback enhances the forward channel capacity more effectively in low-signal-to noise ratio (SNR) region compared with that of high-SNR region, the enhancement in error exponent is significant in both high- and low-SNR regions. This indicates that significant gain due to finite-rate channel state feedback is expected in practical systems in both SNR regions. | en_HK |
dc.format.extent | 445456 bytes | - |
dc.format.extent | 13529 bytes | - |
dc.format.extent | 2706 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | text/plain | - |
dc.language | eng | en_HK |
dc.publisher | IEEE. The Journal's web site is located at http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?puNumber=18 | en_HK |
dc.relation.ispartof | IEEE Transactions on Information Theory | - |
dc.rights | ©2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. | - |
dc.subject | Channel capacity | en_HK |
dc.subject | fading channels | en_HK |
dc.subject | partial channel state information at the transmitter (CSIT) | en_HK |
dc.subject | partial feedback | en_HK |
dc.title | Capacity of memoryless channels and block-fading channels with designable cardinality-constrained channel state feedback | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0018-9448&volume=50&issue=9&spage=2038&epage=2049&date=2004&atitle=Capacity+of+memoryless+channels+and+block-fading+channels+with+designable+cardinality-constrained+channel+state+feedback | en_HK |
dc.description.nature | published_or_final_version | en_HK |
dc.identifier.doi | 10.1109/TIT.2004.833334 | en_HK |
dc.identifier.scopus | eid_2-s2.0-4544383618 | - |
dc.identifier.isi | WOS:000223579500013 | - |
dc.identifier.issnl | 0018-9448 | - |