File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Effects of Fluoride on Two Chemical Models of Enamel Demineralization

TitleEffects of Fluoride on Two Chemical Models of Enamel Demineralization
Authors
KeywordsDemineralization
Enamel
Fluoride
Issue Date2017
PublisherMDPIAG. The Journal's web site is located at http://www.mdpi.com/journal/materials/
Citation
Materials, 2017, v. 10 n. 11, article no. 1245 How to Cite?
AbstractThis study evaluated the effects of fluoride on subsurface enamel demineralization induced by two commonly used chemical models. Forty-eight enamel blocks were demineralized at pH = 5.0 by an acetate buffer (Group 1), a lactate buffer (Group 2), an acetate buffer with 0.02 ppm fluoride (Group 3) and a lactate buffer with 0.02 ppm fluoride (Group 4) at 25 °C for 3 weeks. The surface destruction percentage (SDP), mineral loss and lesion depth of the blocks were studied using micro-computed tomography. An elemental analysis of the enamel surface was evaluated using an energy-dispersive X-ray spectroscopy. Surface micro-hardness was determined by the Knoop Hardness Test. The mean lesion depth of Groups 1 through 4 were 134.1 ± 27.2 μm, 96.1 ± 16.5 μm, 97.5 ± 22.4 μm and 91.1 ± 16.2 μm, respectively (p < 0.001; group 1 > 2, 3 > 4). The SDPs of groups 1 through 4 were 7.8 ± 8.93%, 0.71 ± 1.6%, 0.36 ± 1.70% and 1.36 ± 2.94% (p < 0.001; group 1 > 2, 3, 4). The fluoride in mean weight percentages of groups 1 through 4 were 1.12 ± 0.24%, 1.10 ± 0.20%, 1.45 ± 0.40% and 1.51 ± 0.51%, respectively (p < 0.001; group 3, 4 > 1, 2). The mean Knoop hardness values of groups 1 through 4 were 27.5 ± 13.3, 39.7 ± 19.3, 73.6 ± 44.2 and 91.0 ± 57.2, respectively (p < 0.001; group 4 > 3 > 2 > 1). The chemical model using an acetate buffer solution created significantly deeper zones of subsurface demineralization on enamel than the lactate buffer solution. An acetate buffer may damage the enamel surface, but the surface damage can be prevented by adding fluoride.
Persistent Identifierhttp://hdl.handle.net/10722/249486
ISSN
2023 Impact Factor: 3.1
2023 SCImago Journal Rankings: 0.565
PubMed Central ID
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorYu, OY-
dc.contributor.authorMei, ML-
dc.contributor.authorZhao, IS-
dc.contributor.authorLo, ECM-
dc.contributor.authorChu, CH-
dc.date.accessioned2017-11-21T03:02:54Z-
dc.date.available2017-11-21T03:02:54Z-
dc.date.issued2017-
dc.identifier.citationMaterials, 2017, v. 10 n. 11, article no. 1245-
dc.identifier.issn1996-1944-
dc.identifier.urihttp://hdl.handle.net/10722/249486-
dc.description.abstractThis study evaluated the effects of fluoride on subsurface enamel demineralization induced by two commonly used chemical models. Forty-eight enamel blocks were demineralized at pH = 5.0 by an acetate buffer (Group 1), a lactate buffer (Group 2), an acetate buffer with 0.02 ppm fluoride (Group 3) and a lactate buffer with 0.02 ppm fluoride (Group 4) at 25 °C for 3 weeks. The surface destruction percentage (SDP), mineral loss and lesion depth of the blocks were studied using micro-computed tomography. An elemental analysis of the enamel surface was evaluated using an energy-dispersive X-ray spectroscopy. Surface micro-hardness was determined by the Knoop Hardness Test. The mean lesion depth of Groups 1 through 4 were 134.1 ± 27.2 μm, 96.1 ± 16.5 μm, 97.5 ± 22.4 μm and 91.1 ± 16.2 μm, respectively (p < 0.001; group 1 > 2, 3 > 4). The SDPs of groups 1 through 4 were 7.8 ± 8.93%, 0.71 ± 1.6%, 0.36 ± 1.70% and 1.36 ± 2.94% (p < 0.001; group 1 > 2, 3, 4). The fluoride in mean weight percentages of groups 1 through 4 were 1.12 ± 0.24%, 1.10 ± 0.20%, 1.45 ± 0.40% and 1.51 ± 0.51%, respectively (p < 0.001; group 3, 4 > 1, 2). The mean Knoop hardness values of groups 1 through 4 were 27.5 ± 13.3, 39.7 ± 19.3, 73.6 ± 44.2 and 91.0 ± 57.2, respectively (p < 0.001; group 4 > 3 > 2 > 1). The chemical model using an acetate buffer solution created significantly deeper zones of subsurface demineralization on enamel than the lactate buffer solution. An acetate buffer may damage the enamel surface, but the surface damage can be prevented by adding fluoride.-
dc.languageeng-
dc.publisherMDPIAG. The Journal's web site is located at http://www.mdpi.com/journal/materials/-
dc.relation.ispartofMaterials-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectDemineralization-
dc.subjectEnamel-
dc.subjectFluoride-
dc.titleEffects of Fluoride on Two Chemical Models of Enamel Demineralization-
dc.typeArticle-
dc.identifier.emailYu, OY: ollieyu@hku.hk-
dc.identifier.emailMei, ML: mei1123@hku.hk-
dc.identifier.emailLo, ECM: edward-lo@hku.hk-
dc.identifier.emailChu, CH: chchu@hku.hk-
dc.identifier.authorityYu, OY=rp02658-
dc.identifier.authorityMei, ML=rp01840-
dc.identifier.authorityLo, ECM=rp00015-
dc.identifier.authorityChu, CH=rp00022-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.3390/ma10111245-
dc.identifier.pmid29077034-
dc.identifier.pmcidPMC5706192-
dc.identifier.scopuseid_2-s2.0-85032507274-
dc.identifier.hkuros283327-
dc.identifier.volume10-
dc.identifier.issue11-
dc.identifier.spagearticle no. 1245-
dc.identifier.epagearticle no. 1245-
dc.identifier.isiWOS:000416786200023-
dc.publisher.placeSwitzerland-
dc.identifier.issnl1996-1944-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats